Das Wetter und der Klimawandel

Beiträge mit Schlagwort ‘Jennifer A.Francis’

Wärmere Arktis, mehr Extremwetter

Im Rahmen der globalen Erwärmung steigen die Temperaturen in der Arktis überproportional. Das liegt vor allem an dem Rückgang des arktischen Meereises, das mehr und mehr von der dunklen Wasseroberfläche freigibt, welche das Sonnenlicht nicht reflektiert wie das helle Eis, sondern hervorragend absorbiert. Das führt zu einer erheblichen zusätzlichen Erwärmung. Es handelt sich um einen umgekehrt ablaufenden Eis-Albedo Effekt.
 
Eine in den Geophysical Research Letters im April 2012 veröffentlichte Studie der beiden Wissenschaftler Jennifer A. Francis und Stephen J. Vavrus, “Evidence linking Arctic amplification to extreme weather in mid-latitudes”,  fand nun einen Zusammenhang zwischen dieser arktischen Erwärmung und der Zunahme von Extremwetterereignissen. Die überproportionale Erwärmung der hohen arktischen Breiten im Vergleich zu den mittleren Breiten bedeutet eine Abnahme des Temperaturgefälles an der Polarfront, der Grenze zwischen warmen und kalten Luftmassen. Da dieses Temperaturgefälle mit einem Druckgefälle einhergeht das den Jetstream antreibt, wird der Jetstream schwächer und seine Strömung langsamer.
 
Saisonale Abweichungen der 1000-500 hPa Schichtdicke (m) nördlich 40°N zwischen der Periode 2000–2010 und der Periode 1970–1999: (a) Herbst (OND), (b) Winter (JFM), (c) Frühling (AMJ) und (d) Sommer (JAS). Die weissen Sternchen zeigen die Bereiche, wo die Wahrscheinlichkeit, daß es sich um Zufallsergebnisse handelt kleiner ist als 5% (p < 0.05). Das Ergebnis ist hier also satistisch eindeutig signifikant .  Schichtdicke 1000-500 hPa meint die Höhendifferenz zwischen den Flächen wo der Luftdruck 1000 hPa und wo der Luftdruck nur noch 500 hPa beträgt. Je wärmer die Luft ist, umso mehr dehnt sie sich in die Höhe aus und um so größer ist diese Schichtdicke und umgekehrt. Quelle: Francis and Vavrus, 2012
 
Der Jetstream verhält sich so ähnlich wie ein Fluss. Die Strömung ist mal schneller, mal langsamer, mehr oder weniger turbulent und immer wieder bilden sich Wirbel, welche mit der Strömung davongetragen werden. Bei den Wirbeln des Jetstreams handelt es sich um die das Wetter bestimmenden dynamischen Hochs und Tiefs.
Da die Strömung des Jetstreams infolge des verringerten Temperaturgefälles abnimmt bewegen sich auch die Hochs und Tiefs langsamer und damit hält auch extremes Wetter wie Hitzewellen und Trockenheit (Hochs) oder Unwetter (Tiefs) länger an. Noch etwas kommt aber hinzu. Der Jetstream wird nicht nur langsamer, er wird auch „welliger“, er mäandert stärker, die Amplitude der Rossby-Wellen nimmt zu. Über die tiefen Wellentäler – die Meteorolgen nennen sie „Tröge“ – gelangt polare Kaltluft bis weit in den Süden. Die tieferen Wellentäler erklären zum Beispiel die gehäuften kalten Episoden der letzten Winter auf der Nordhalbkugel. Über die  Wellenberge – die „Rücken“ – gelangt im Gegenzug allerdings auch Warmluft bis weit in den Norden. Deshalb war es in den letzten kalten Wintern in Grönland so überraschend milde, oft sogar deutlich wärmer als bei uns in Europa.
 

Jens Christian Heuer

 

Global Warming, Arctic Amplification and Extreme Weather

A brand-new paper from Jennifer A. Francis and Stephen J. Vavrus „Evidence linking Arctic amplification to extreme weather in mid-latitudes“, (GEOPHYSICAL RESEARCH LETTERS, VOL. 39, 2012)
sheds new light on the issue of extreme weather events due to global warming!
The two scientists found evidence that enhanced Arctic warming relative to mid latitudes (Arctic amplification, AA) leads to prolonged extreme weather events, like droughts, heat waves (such as in Russia, summer 2010!), heavy rain and cold spells (remember persistent chilly conditions in recent winters!).

Arctic Amplification means enhanced arctic warming relative to mid latitudes due to a sort of inverse Ice-Albedo-Feedback. Decreasing bright, highly reflective sea ice is replaced by dark open water, absorbing sunlight strongly. Open water also releases a lot of moisture and latent heat in artctic atmosphere.
Due to the fact that jetstream is driven by gradient in air-temperature (and gradient in air pressure arising thereby, respectively) between polar regions and mid latitudes, jetstream slows down and becomes wavier.

Seasonal anomalies in 1000-500 hPa thicknesses (m) north of 40°N during 2000–2010 relative to 1970–1999: (a) autumn (OND), (b) winter (JFM), (c) spring (AMJ), and (d) summer (JAS). White asterisks indicate significance with chance level p < 0.05. 1000-500 hPa thickness reveals aerial vertical thermal expansion by means of distance between 1000 hPa- and 500 hPa isobaric surface. Source: Francis and Vavrus, 2012

As a result high and low pressure systems moved by jetstream slow down, too.
These weather systems arise from turbulence in jetstream like the vortexes of a raging river do.

A wavy jetstream results in cold spells via wave troughs (in reverse warm spells via wave crests, respectively), whereas high air moisture makes possible  a lot of snow.

Finally a nice animation of the jetstream of northern hemisphere from NASA/Goddard Space Flight Center (Scientific Visualization Studio):

Jens Christian Heuer

Schlagwörter-Wolke