Das Wetter und der Klimawandel

Beiträge mit Schlagwort ‘Jetstream’

Full Disk Earth on 27th May, 2012

On May 27th 2012 european weather satellite MeteoSat took a nice picture of full disk earth displaying some intersting weather action. Meteosat circles Earth in a geostationary orbit (36.000 km altitude) delivering daily current views frome same fixed position above surface of the planet.

Jetstream and dynamical weather systems: A band of cloud across Northern Atlantic (from Greenland to Scandinavia) indicates behaviour of jetstream, driven by gradient in air-temperature (and gradient in air pressure arising thereby, respectively) between polar regions and mid latitudes.

Jetstream is crucial to weather forecast:

Like the vortexes in a raging river high and low pressure systems – weather-determining in mid latitudes – arise from turbulences in jetstream and are moved by flow of jetstream after that.

Weather on 27th May, 2012, 16:00 UTC . Innertropical Convergence Zone, the deserts of Subtropical High Pressure Belt and the weather systems (cyclones and anticyclones) of the mid – latidudes are easily dercernable. Natural Color RGB images makes use of three solar channels: red, green and blue. In this color scheme vegetation appears greenish because of its large reflectance in the green beam channel compared to the red and blue beam channels. Water clouds with small droplets have large reflectance at all three channels and hence appear whitish, while snow and ice clouds appears cyan because ice strongly absorbs in red. Bare ground appears brown because of the larger reflectance in the red beam channel than at the blue one, and the ocean appears black because of the low reflectance in all three channels. Source: Meteosat, EUMETSAT

The two vortexes over middle Northern Atlantic, one of them in the southwest of British Isles, another one further westward, are cut-off  lows. They have separated from jetstream some time ago, triggered by a large blocking high pressure system widespread over parts of Northern, Western and Central Europe and German Sea. Blocking highs occur if the flow of  jetstream slows down or even breaks so that a moving high pressure systeme comes to a deadlock. The two Cut-off lows over middle Northern Atlantic are following a pathway southward blocking high.

Inside high pressure systems (anticyclones), spinning arount clockwise, air sinks and nearly all clouds decay, because water in the condensed form tends to evaporate into water vapor. Thus high pressure systems lead to fair weather at most times.

Inside low pressure systems (cyclones), spinning around counterclockwise, air rises and cools, so that water vapor condenses, forming clouds made of tiny water droplets or ice crystals. Latent heat (thermal energy of condensation) released thereby, powers cloud formation for her part by warming the rising air. Low pressure systems imply bad weather with rainfall an thunderstorms many a time. 

Tropical-subtropical Hadley-Circulation:  Away from almost cloud-free subtropical belt of high pressure systems air flows to equator going along surface. These tradewinds are turning westward due to Earth´s rotation. Throughout the region of equator there´s a buildup of low pressure, called Innertropical Convergence Zone (ITCZ). Heated by the sun, equatorial air rises and cools, forcing whatever water vapor it holds to condense into clouds. The ascended air moves poleward, turning eastward by Earth´s rotation soon after. As moving poleward, air flow comes closer to the axis of earth’s rotation. That´s why it goes faster, often forming a subtropical jetstream that rotates more rapidly than the Earth itself. In addition air descends closing the circulation in this way. This so called Hadley-Circulation is breaking up in a row of cloud-rich convective cells around the whole planet Earth.

Jens Christian Heuer

Advertisements

Wärmere Arktis, mehr Extremwetter

Im Rahmen der globalen Erwärmung steigen die Temperaturen in der Arktis überproportional. Das liegt vor allem an dem Rückgang des arktischen Meereises, das mehr und mehr von der dunklen Wasseroberfläche freigibt, welche das Sonnenlicht nicht reflektiert wie das helle Eis, sondern hervorragend absorbiert. Das führt zu einer erheblichen zusätzlichen Erwärmung. Es handelt sich um einen umgekehrt ablaufenden Eis-Albedo Effekt.
 
Eine in den Geophysical Research Letters im April 2012 veröffentlichte Studie der beiden Wissenschaftler Jennifer A. Francis und Stephen J. Vavrus, “Evidence linking Arctic amplification to extreme weather in mid-latitudes”,  fand nun einen Zusammenhang zwischen dieser arktischen Erwärmung und der Zunahme von Extremwetterereignissen. Die überproportionale Erwärmung der hohen arktischen Breiten im Vergleich zu den mittleren Breiten bedeutet eine Abnahme des Temperaturgefälles an der Polarfront, der Grenze zwischen warmen und kalten Luftmassen. Da dieses Temperaturgefälle mit einem Druckgefälle einhergeht das den Jetstream antreibt, wird der Jetstream schwächer und seine Strömung langsamer.
 
Saisonale Abweichungen der 1000-500 hPa Schichtdicke (m) nördlich 40°N zwischen der Periode 2000–2010 und der Periode 1970–1999: (a) Herbst (OND), (b) Winter (JFM), (c) Frühling (AMJ) und (d) Sommer (JAS). Die weissen Sternchen zeigen die Bereiche, wo die Wahrscheinlichkeit, daß es sich um Zufallsergebnisse handelt kleiner ist als 5% (p < 0.05). Das Ergebnis ist hier also satistisch eindeutig signifikant .  Schichtdicke 1000-500 hPa meint die Höhendifferenz zwischen den Flächen wo der Luftdruck 1000 hPa und wo der Luftdruck nur noch 500 hPa beträgt. Je wärmer die Luft ist, umso mehr dehnt sie sich in die Höhe aus und um so größer ist diese Schichtdicke und umgekehrt. Quelle: Francis and Vavrus, 2012
 
Der Jetstream verhält sich so ähnlich wie ein Fluss. Die Strömung ist mal schneller, mal langsamer, mehr oder weniger turbulent und immer wieder bilden sich Wirbel, welche mit der Strömung davongetragen werden. Bei den Wirbeln des Jetstreams handelt es sich um die das Wetter bestimmenden dynamischen Hochs und Tiefs.
Da die Strömung des Jetstreams infolge des verringerten Temperaturgefälles abnimmt bewegen sich auch die Hochs und Tiefs langsamer und damit hält auch extremes Wetter wie Hitzewellen und Trockenheit (Hochs) oder Unwetter (Tiefs) länger an. Noch etwas kommt aber hinzu. Der Jetstream wird nicht nur langsamer, er wird auch „welliger“, er mäandert stärker, die Amplitude der Rossby-Wellen nimmt zu. Über die tiefen Wellentäler – die Meteorolgen nennen sie „Tröge“ – gelangt polare Kaltluft bis weit in den Süden. Die tieferen Wellentäler erklären zum Beispiel die gehäuften kalten Episoden der letzten Winter auf der Nordhalbkugel. Über die  Wellenberge – die „Rücken“ – gelangt im Gegenzug allerdings auch Warmluft bis weit in den Norden. Deshalb war es in den letzten kalten Wintern in Grönland so überraschend milde, oft sogar deutlich wärmer als bei uns in Europa.
 

Jens Christian Heuer

 

Global Warming, Arctic Amplification and Extreme Weather

A brand-new paper from Jennifer A. Francis and Stephen J. Vavrus „Evidence linking Arctic amplification to extreme weather in mid-latitudes“, (GEOPHYSICAL RESEARCH LETTERS, VOL. 39, 2012)
sheds new light on the issue of extreme weather events due to global warming!
The two scientists found evidence that enhanced Arctic warming relative to mid latitudes (Arctic amplification, AA) leads to prolonged extreme weather events, like droughts, heat waves (such as in Russia, summer 2010!), heavy rain and cold spells (remember persistent chilly conditions in recent winters!).

Arctic Amplification means enhanced arctic warming relative to mid latitudes due to a sort of inverse Ice-Albedo-Feedback. Decreasing bright, highly reflective sea ice is replaced by dark open water, absorbing sunlight strongly. Open water also releases a lot of moisture and latent heat in artctic atmosphere.
Due to the fact that jetstream is driven by gradient in air-temperature (and gradient in air pressure arising thereby, respectively) between polar regions and mid latitudes, jetstream slows down and becomes wavier.

Seasonal anomalies in 1000-500 hPa thicknesses (m) north of 40°N during 2000–2010 relative to 1970–1999: (a) autumn (OND), (b) winter (JFM), (c) spring (AMJ), and (d) summer (JAS). White asterisks indicate significance with chance level p < 0.05. 1000-500 hPa thickness reveals aerial vertical thermal expansion by means of distance between 1000 hPa- and 500 hPa isobaric surface. Source: Francis and Vavrus, 2012

As a result high and low pressure systems moved by jetstream slow down, too.
These weather systems arise from turbulence in jetstream like the vortexes of a raging river do.

A wavy jetstream results in cold spells via wave troughs (in reverse warm spells via wave crests, respectively), whereas high air moisture makes possible  a lot of snow.

Finally a nice animation of the jetstream of northern hemisphere from NASA/Goddard Space Flight Center (Scientific Visualization Studio):

Jens Christian Heuer

Kältere Winter durch weniger Meereseis in der Arktis

Eine Gruppe von Wissenschaftlern unter der Leitung von Dr. Jiping Liu (Abb.1) am New Yorker Columbia University Center for Climate Systems Research fand in Satellitendaten au den Jahren 1979-2010 deutliche Hinweise auf einen engen Zusammenhang zwischen dem Abschmelzen des Meereseises in der Arktis und den in den letzten Jahren wieder kälteren und schneereicheren Wintern auf großen Teilen der Nordhalbkugel. Vor allem Nordamerika, ganz Europa und große Teile  Ostasiens waren betroffen. Es gab dort wiederholt Kältewellen wie schon lange nicht mehr, sehr ergiebige Schneefälle, oft auch Schneestürme und Schneeverwehungen.

Abb. 1 Dr. Jiping Liu  Quelle: Wikipedia Russia

Die Temperaturen in der Arktis haben im Rahmen der globalen Erwärmung überproportional zugenommen. Hauptgrund ist ein umgekehrt ablaufender Eis-Albedo-Effekt.

Die schwindenden hellen Eisflächen über den arktischen Meeren (Abb. 2 oben)geben mehr und mehr von der dunklen Wasseroberfläche frei, die das Sonnenlicht nicht reflektiert wie das Eis, sondern hervorragend absorbiert. Das bedeutet eine erhebliche zusätzliche Erwärmung.

Vor allem im Sommer speichert das Wasser im Sommer mehr Wärme, die es dann verzögert über den Herbst und Winter wieder abgibt. Große Mengen an Feuchtigkeit und damit auch an latenter Wärme gelangen durch Verdunstung in die Atmosphäre über der Arktis. Die latente Wärme ist die Energie, die notwendig war, um das Wasser zu verdunsten. Sie wird wieder frei, wenn die Luftfeuchtigkeit bei der Wolkenbildung in kleinen Tröpfchen kondensiert (Kondensationswärme). Die Neubildung von Meereseis im Winter verringert sich. Der hohe Eintrag von latenter Wärme über der Arktis verringert den Temperargradienten an der Polarfront und damit auch die atmosphärische Luftzirkulation der mittleren Breiten. Der von dem Temperaturgradienten zwischen (sub)tropischer Warmluft und polarer Kaltluft angetriebene Jetstream wird schwächer und dadurch die Auslenkung der sich in ihm bildenden Rossby-Wellen größer (Abb. 3, oben links).

Die nun vorwiegend meridionale Luftzirkulation bringt gehäufte Vorstöße polarer Kaltluft nach Süden über die Tröge, die Wellentäler des Jetstreams. Im Gegenzug gelangt mancherorts aber auch Warmluft bis weit in den Norden, über die Rücken, die Wellenberge des Jetstreams (Abb. 3, unten links). Die erhöhte Feuchtigkeit der kalten Polarluft – durch die stärkere Verdunstung über den zunehmend eisfreien arktischen Meeren – führt zu mehr und ergiebigeren Schneefällen (Abb.2 unten).

Abb.2 Oben: Anomalien der Meereseisbedeckung in der Arktis und Arktische Oszillation (AO). Es gibt nur eine geringe Übereinstimmung (Korrelation 0,28). Unten: Zusammenhang zwischen den Anomalien der arktischen Meereseisdeckung und der Schneedecke im Winter (lineare Regression). In den rotgefärbten bereichen fiel deutlich mehr Schnee. Quelle: Jiping Liu et al.

Der Nachweis, daß die erhöhte Luftfeuchtigkeit tatsächlich aus den arktischen Meeren stammt, konnte über die Bestimmung des Deuterium-Exzesses geführt werden.

(Der Deuterium-Exzess ist definiert als: Gehalt an Wassermolekülen mit dem schweren Wasserstoffisotop Deuterium H2 minus Gehalt an Wassermolekülen mit dem schweren Sauerstoffisotop O18. Beim Verdunsten findet eine Fraktionierung statt, da beide nicht so leicht in die Gasphase übergehen wie die sehr viel häufigeren Wassermoleküle mit dem jeweils leichteren Isotopen H1 und  O16. Je niedriger die Temperatur umso besser funktioniert das. Der Wasserdampf enthält danach verringerte Mengen an Wassermolekülen mit den schwereren Isotopen H2 und O18. Aber auch untereinander gibt es eine Fraktionierung und deshalb auch einen Deuteriumexzess. Da spielen neben der unterschiedlichen Beweglichkeit der jeweiligen Wassermoleküle, wiederum vor allem die Temperatur, aber auch die Luftfeuchtigkeit eine Rolle.)

Der Übergang zu einer meridionalen Luftzirkulation infolge des zurückgehenden Meereseises in der Arktis erinnert sehr an Vorgänge bei der Arktischen Oszillation (AO).

Dabei handelt es sich um eine Luftdruckschaukel zwischen Arktis und mittleren Breiten.

Ihre Erscheinungsform im Nordatlantik ist die Nordatlantische Oszillation (NAO), bei der es zu Schwankungen des Luftdruckgegensatzes zwischen dem arktischen Islandtief und dem subtropischen Azorenhoch kommt, die sogar bis hin zu einer Umkehrung der normalen Luftdruckverhältnisse gehen können.

Im positiven Modus der AO (bzw. NAO) mit einem großen Luftdruckgegensatz zwischen arktischen Tiefs (bzw. Islandtief im Nordatlantik) und subtropischen Hochs der mittleren Breiten (bzw. Azorenhoch im Nordatlantik) herrschen starke Westwinde und damit eine zonale Luftzirkulation entlang der Breitengrade vor (starker Jetstream). Im negativen Modus der AO (bzw. NAO) ist dieser Luftdruckgegensatz gering oder kehrt sich sogar um, so daß die Westwinde schwach bleiben oder ganz ausfallen und eine meridionale Luftzirkulation, entlang der Längengrade vorherrscht (schwacher Jetstream, Abb. 3, oben rechts). Dadurch gelangt dann polare Kaltluft weit in den Süden und im Gegenzug (sub)tropische Warmluft bis weit in den Norden (Abb. 3, unten rechts).

Abb.3 Oben links: Zusammenhang zwischen den Anomalien der Arktischen Meereseisbedeckung und des Luftdruckes auf Meereshöhe (lineare Regression). Rot zeigt einen erhöhten, blau einen veringerten Luftdruck an. Unten links: Zusammenhang zwischen den Anomalien der Arktischen Meereseisbedeckung  und der Temperatur (lineare Regression). In den blauen Regionen war es deutlich kälter als normal. Oben rechts: Zusammenhang zwischen AO-Index  und Anomalien des Luftdruckes auf Meereshöhe (lineare Regression) Unten rechts: Zusammenhang zwischen AO-Index und Anomalien der Temperatur (lineare Regression). Die jeweiligen Muster unterscheiden sich! Weitere Erklärungen im Text. Quelle: Jiping Liu et al.

Trotz der großen Ähnlichkeit zwischen dem negativen Modus der AO (bzw. NAO) und der Luftdruckanomalien infolge des Abschmelzens des Meereseises in der Arktis sind die beide Phänomene nicht ein und dasselbe, denn es gibt auch auffallende Unterschiede. So treten beide nicht immer zeitgleich auf. Ihre zeitliche Variabilität weicht also voneinander ab. Darüber hinaus sind bei den Luftdruckanomalien infolge der arktischen Meereseisschmelze die Rossby-Wellen im Jetstream deutlich ausgeprägter (Abb 3, oben links und oben rechts). Sie zeigen eine größere und breitere Auslenkung als bei einer negativen AO (bzw. NAO).

Die Wissenschaftler um Jiping Liu rechnen auch in Zukunft mit einem weiteren Rückgang des arktischen Meereseises und damit einhergehend auch weiterhin häufiger mit kälteren Wintern auf der Nordhalbkugel. Aus den Schwankungen der Meereseisbedeckung der Arktis im Herbst, lässt sich vielleicht schon bald das Wetter des kommenden Winters in den Grundzügen vorhersagen, so die Wissenschaftler.

Jens Christian Heuer

Quelle: Impact of declining Arctic sea ice on winter snowfall, Jiping Liu, Judith A. Curry, Huijun Wang, Mirong Song, and Radley M. Horton (PNAS January 17, 2012).

Herzlichen Dank an Herrn Dr. Jiping Liu, der mir netterweise die Originalarbeit zukommen ließ!

A Satellite Picture explaining our Weather

The European weather satellite Meteosat, circles the Earth on a geostationary orbit (36.000 km altitude) providing daily current views of our planet. On this color infrared recording of  November 22th 2011, you can see some important phenomena of global weather patterns.  

Dynamical Weather Systems: Weather on earth-like planets is driven by temperature differences between equator and poles, caused by different sun´s irradiance. In mid – latitudes, where warm tropical and cool polar air masses encounter each other, gradient of temperature (and thereby gradient of pressure) is sufficient to generate a high altitude air current (called tropospheric polar jetstream) on both hemispheres, turning eastward under influence of earth’s rotation.

Breaking a critical speed limit, the jetstream forms Rossby waves with troughs and ridges(wave peaks). A lot of shear forces emerge. The waves break and roll up to vortices. These are the high pressure und low pressure systems, enabled to intermix the warm tropical and cool polar air masses.

The high pressure vortices (anticyclones) are spinning downward and clockwise (counterclockwise) on northern (southern) hemisphere, whereas the low pressure vortices (cyclones) are spinning upward and counterclockwise (clockwise) on northern (southern) hemisphere.

Weather at November 22th, 2011, 12:00 UTC . The ITCZ, the deserts in the Subtropical High Presure Belt and the Low Pressure Systems (Cyclones) of the mid – latidudes are easily dercernable. Natural Color RGB images makes use of three solar channels: red, green and blue. In this color scheme vegetation appears greenish because of its large reflectance in the green beam channel compared to the red and blue beam channels. Water clouds with small droplets have large reflectance at all three channels and hence appear whitish, while snow and ice clouds appears cyan because ice strongly absorbs in red. Bare ground appears brown because of the larger reflectance in the red beam channel than at the blue one, and the ocean appears black because of the low reflectance in all three channels. Source: Meteosat, EUMETSAT

Inside low pressure systems the air rises and cools, so that water vapor condenses, forming clouds made of tiny water droplets or ice crystals (bad weather). Latent heat (thermal energy of condensation) thereby released powers cloud formation on her part warming the rising air.

Inside high pressure systems the air sinks and clouds decay, because water in the condensed form tends to evaporate into water vapor (fair weather).

Cyclones derive their energy not only from the jetstream, but also from latent heat liberated during formation of clouds. In turn they transmitted back a portion of their energy to jetstream.

The pathways of cyclones are affected by the behaviour of the jetstream.But sometimes the high air current slow down or breaks actually, so that the cyclones are able to seperate from jetstream. These cut off lows move slowly and won’t exit a region until they are captured by a trough of a new jetstream, which meanwhile has usually formed.

Low Pressure Systeme (Cyclone) Source: Bjerknes (1922)

Tropical Hadley – Circulation: Away from this areas of high pressure the air masses move equatorially along the surface (tradewinds), where´s a buildup of low pressure (Innertropical Convergence Zone, ITCZ) : These tradewinds turn westward due to earth´s  rotation. Heated by the sun,  equatorial air rises and cools, forcing whatever water vapor it holds to condense into clouds. The ascended air moves poleward , but it is turned eastward by the earth´s rotation. As moving  polewards, the air current contracts closer to the axis of earth’s rotation. So it must spin faster, creating subtropical jetstreams that rotate more rapidly than the Earth itself..In parts however, the air descends in the belt of subtropical pressure, closing the air circulation. This so called Hadley-Circulation.partions in a row of convective cells around the whole planet.

Stratosphere and Polar Vortex: The stratosphere is the next layer of atmosphere above the troposphere, in which most weather processes play. The stratosphere contains little water vapor, but larger quantities of ozone, protecting life by absorption of dangerous solar ultraviolet radiation. Therefore the stratosphere is much warmer than the upper troposphere.

If the stratosphere over the poles is cold enough during the polar night, a polar vortex forms due to a sufficient gradient of temperature to build up an eastward stratospheric jetstream, which is a propulsion engine of tropospheric polar jetstream (see above).

A strong polar vortex favors a poleward, zonal circulation (along the lines of latitude), a weak, often divided polar vortex, however, favors a meridional circulation with pronounced troughs and ridges (along the lines of longitude).

Jens Christian Heuer

Ein Satellitenbild erklärt das Wetter

Der europäische Wettersatellit Meteosat, der die Erde auf einer geostationären Bahn in rund 36.000 km Höhe umkreist liefert täglich aktuelle Ansichten unseres Planeten. Auf dieser eingefärbten Infrarotaufnahme vom 06. Juni 2009 lassen sich die wichtigen Erscheinungen des globalen Wettergeschehens gut erkennen.

 Infrarotaufnahmen bilden die unsichtbare Wärmestrahlung ab, die vom Land, den Wasserflächen und den Wolken ausgeht. Warme Objekte erscheinen dunkel, kalte Objekte dagegen hell. Aus den Helligkeiten der Objekte ist somit ein direkter Rückschluß auf deren Temperatur möglich. Infrarotbilder gelingen auch in der Dunkelheit der Nacht, denn im Gegensatz zum sichtbaren Licht ist die Wärmestrahlung immer vorhanden. Quellwolken, die sich bis in große Höhen auftürmen sind wegen der mit der Höhe abnehmenden Lufttemperatur an ihrer Oberseite relativ kalt und erscheinen daher hell. Dasselbe gilt für die nur in großer Höhe entstehenden Eiswolken. Niedrige Wolken sind dagegen schon fast genauso warm wie die Erdoberfläche darunter und erscheinen somit ähnlich dunkel. Diese Aufnahme ist zusätzlich noch eingefärbt (RGB-Komposit), wodurch sich die verschiedenen Luftmassen gut unterscheiden lassen.

Wetterlage am 06. Juni 2009 Infrarot-Komposit Meteosat; grün = tropische Warmluft, blau = polare Kaltluft, weiss = hohe Wolken, ockergelb = mittelhohe Wolken, rot = absinkende Luftmassen in der Stratosphäre zeigen Tiefdruckgebiete an (Durch Divergenzen in der Höhenströmung werden nicht nur Luftmassen von unten gehoben, sondern auch von oben angesaugt; Ausbildung einer Tropopausenfalte und Absinken der darüber befindlichen stratosphärischen Luft). Die ITCZ zeigt sich in der Äquatorregion als Wolkenband mit zahlreichen hochreichenden Gewitterzellen (hellgelbe Wolken). Gut zu erkennen sind auch die girlandenartig aufgereihten dynamischen Tiefdruckwirbel in den mittleren Breiten der Nordhalbkugel. Quelle: EUMETSAT

Das Satellitenbild zeigt sehr schön die globale Luftzirkulation der Erde und die damit einhergehenden Wettererscheinungen, welche für einen Temperaturausgleich zwischen den von der Sonne unterschiedlich stark beschienenen Regionen des Planeten sorgen. Die Pole bekommen im Vergleich zur Äquatorregion (Tropen) deutlich weniger Sonnenenergie ab. Die Folge ist ein Temperaturgefälle (Temperaturgradient) von der Äquatorregion zu den Polen auf beiden Erdhalbkugeln.

Die mittleren Breiten: Sowohl auf der Nord- als auch auf der Südhalbkugel treffen tropische Warmluft und polare Kaltluft  jeweils in den mittleren Breiten aufeinander. Da warme Luft sich (vertikal) mehr ausdehnt als kalte Luft, erzeugt das Temperaturgefälle zwischen beiden Luftmassen auch ein Druckgefälle, das mit wachsender Höhe zunimmt. Daraus resultieren über beiden Erdhalbkugeln polwärts gerichtete Winde, die unter dem Einfluß der Erdrotation  zu Westwinden abgelenkt werden. In grösserer Höhe (obere Troposphäre) bilden sich wegen des dort sehr hohen Druckgradienten Starkwindbänder, die  Jetstreams. Aus Turbulenzen im Jetstream entwickeln sich (unter der Einwirkung der Erdrotation) aufwärtsgerichtete dynamische Tiefdruckwirbel (Cyclonen) und abwärtsgerichtete dynamische Hochdruckwirbel (Anticyclonen). Innerhalb der Cyclonen wird die Luft gehoben und kühlt dabei ab, so dass sich bei ausreichender Luftfeuchtigkeit viele Wolken bilden können (Schlechtwetter). Bei den Anticyclonen verhält es sich genau umgekehrt (Schönwetter). Beide Druckgebilde verwirbeln tropische Warmluft und polare Kaltluft miteinander. Die Cyclonen bewegen sich mit der Höhenströmung in Richtung Osten und sorgen unter ihren Zugbahnen (zusammen mit Zwischenhochs) für ein mildes, aber auch wechselhaftes Wetter.

Es ist so ähnlich wie bei einem Fluss mit Stromschnellen: Wenn das Gefälle zunimmt oder Felsblöcke  das Flußbett verengen, dann bilden sich Wirbel, welche mit der Strömung davongetragen werden. Dem Gefälle des Flusses entspricht beim Jetstream das Temperatur- bzw. Druckgefälle zwischen tropischer Warmluft und polarer Kaltluft. Die Rolle der Felsblöcke spielen hohe Gebirge, welche die Höhenströmung stören.

Tiefdruckwirbel (Cyclonen): Durch die vom Tiefdruckzentrum ausgehende Drehbewegung stösst warme Luft polwärts gegen die Kaltluft vor (Warmfront), und im Gegenzug stösst kalte Luft äquatorwärts gegen die Warmluft vor (Kaltfront). An der Warmfront, wo die warme Luft langsam über die kältere Luft nach oben gleitet, bildet sich eine Schichtbewölkung (Stratus) Häufig regnet es über längere Zeit (Landregen). In größeren Höhen, wo es noch kälter ist, bilden sich Eiswolken (Cirrus). Die Kaltfront und die dahinter befindliche Kaltluft bewegen sich wesentlich schneller als die vorauseilende Warmluft, da letztere aufgrund ihrer Aufstiegstendenz eine schwächer ausgeprägte Vorwärtsbewegung hat. Die Warmluft wird so nach und nach von der sie einholenden Kaltluft durchdrungen und erfährt dabei, da sie leichter ist, einen starken Auftrieb (labile Luftschichtung). Durch Konvektion bildet sich eine ausgeprägte Quellbewölkung. Bei kräftigen Winden kommt es zu heftigen Regenfällen, oft auch zu Gewittern mit Hagel. Der Warmluftsektor wird nach und nach zusammengeschoben. Warm- und Kaltfront vereinigen sich zu einer Mischfront (Okklusion) bis schließlich der Warmluftsektor vollkommen verschwunden ist. Später löst sich das Tief dann ganz auf. Die durchschnittliche Lebensdauer dynamischer Tiefdruckwirbel liegt bei knapp einer Woche. An den Kaltfronten älterer Tiefdruckgebiete können kleine Wellenstörungen auftreten und die Bildung weiterer dynamischer Tiefdruckgebiete (Randtiefs, Tochtertiefs) auslösen. Quelle: Geo Special Nr. 2 Wetter 1982

Cyclonen beziehen ihre Energie nicht nur aus den sie hervorbringenden Jetstreams, sondern auch aus der latenten Wärme (Kondensationswärme), die bei der Wolkenbildung  frei wird. Die Cyclonen ihrerseits übertragen einen Teil ihrer Energie  wiederum an ihren Jetstream.

Cyclonen und Anticyclonen erzeugen Schwingungen innerhalb der Jetstreams. Bei Überschreiten einer kritischen Windgeschwindigkeit beginnt der Jetstream dann zu mäandern und bildet Rossby-Wellen aus. In den cyclonalen Wellentälern (Höhentrögen) wird polare Kaltluft äquatorwärts, in den anticyclonalen Wellenbergen (Hochkeilen, Rücken) tropische Warmluft polwärts transportiert (meridionaler Transport). Bei einem stark mäandernden Jetstream bricht die Höhenströmung teilweise zusammen, so daß sich cyclonale und anticyclonale Wirbel abspalten können (Cut Off). Anschließend erneuert sich weiter polwärts die Höhenströmung wieder.

Jetstream mit Höhentrögen, Hochkeilen und dem Cut Off eines Kaltlufttropfens Quelle: http://www.britannica.com/

Die cyclonalen Wirbel (Kaltlufttropfen, kalte Höhentiefs) bewegen sich (langsam) mit den jeweils vorherrschenden Winden und bringen schlechtes Wetter. Die anticyclonalen Wirbel bleiben oft stationär und zwingen als blockierende Hochdruckgebiete die von Westen herannahenden dynamischen Tiefdruckgebiete zu oft großen Umwegen. In ihrem Einflußbereich herrscht sonniges Wetter bei zumeist wolkenfreiem Himmel. Nachts kann es  wegen der fehlenden Wolken allerdings auch empfindlich kalt werden. Bei ausreichender Luftfeuchtigkeit bilden sich dann bodennahe Nebel.

Die Pole: Über den Polen der Erde bilden sich in der Stratosphäre abwärtsgerichtete, kalte Tiefdruckwirbel, welche bis in die mittlere Troposphäre hinabreichen, die Polarwirbel.

Die Stratosphäre ist die nächsthöhere Atmosphärenschicht oberhalb der Troposphäre, wo sich das meiste Wettergeschehen abspielt. In der Stratosphäre gehtes hingegen vergleichsweise ruhig zu. Sie enthält nur wenig Wasserdampf, dafür aber größere Mengen Ozon, das die für das Leben gefährlichen Anteile der von der Sonne eintreffenden Ultraviolettstrahlung absorbiert. Dadurch wird die Stratosphäre deutlich wärmer als die obere Troposphäre.

Ein Polarwirbel kann sich nur bilden, wenn die Stratosphäre über den Polen kalt genug ist. Während der Polarnacht nimmt der jeweilige Polarwirbel an Stärke zu. Dann ist der stratosphärische Temperaturgradient besonders hoch und treibt dementsprechend den Stratosphärenjetstream an, gleichzeitig der äussere Rand des Polarwirbels.

Die Tropen: Auf beiden Erdhalbkugeln bildet eine Reihe dynamischer Hochdruckwirbel (Anticyclonen) jeweils einen subtropischen Hochdruckgürtel, welche wegen der zumeist fehlenden Wolken auf Satellitenbildern gut auszumachen sind  (Wüstenklima der Subtropen). Im Bereich der Innertropischen Konvergenzzone (ITCZ) strömen die warmen Luftmassen aus den Subtropenhochs von Nord- und Südhalbkugel zusammen (Konvergenz) und werden gehoben. Wegen der hohen Luftfeuchtigkeit in den Tropen bilden sich hier auffällig viele Wolken (tropisch feuchtes Klima mit häufigen und heftigen Gewittern). Die über der ITCZ gehobenen Luftmassen erreichen die Subtropenhochs, um dort wieder abzusinken. ITCZ und Subtropenhochs sind somit (auf beiden Erdhalbkugeln) über eine Reihe von Konvektionszellen miteinander verbunden, die Hadley-Zellen.

Über den Subtropen entwickelt sich unter dem Einfluss der Erdrotation  eine von Westen nach Osten gerichtete Höhenströmung, die bei ausreichender Energiezufuhr in Form von latenter Wärme aus den Hadley-Zellen einen Subtropenjetstream ausbildet.

Jens Christian Heuer

Schlagwörter-Wolke